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AN EFFECTIVE PROGRAMMING BY DEMONSTRATION METHOD  

FOR SMES’ INDUSTRIAL ROBOTS 

Traditional programming methods often require expertise and significant time investment, which does not 

conform with Small and Medium size Enterprises (SMEs) nature in which High-Mix, Low-Volume (HMLV) 

orders are usually encountered. In this research, a Programming by Demonstration (PbD) method which aims to 

reduce the programming time and complexity while keeping a suitable level of execution accuracy is proposed. 

For this purpose, a special teaching tool is designed and manufactured. The tool has 5-spherical passive markers 

to indicate the position and orientation along the desired 3D path. An optical tracking system using stereo 

camera is used to capture the 3D pose of the teaching tool. The capturing algorithm is based on Circle Hough 

Transform (CHT) and Singular Value Decomposition (SVD). The developed tool and programming method 

have been tested experimentally. The results show successful capturing of the desired path points with  

a competitive level of accuracy compared with other methods.  

1. INTRODUCTION  

Robot programming has become one of the difficulties which face the users and still in 

the focus of many researchers’ interest. Generally, there are two types of robot 

programming methods: offline programming and online programming. In offline 

programming methods the operator does not interfere with the robot environment.  

The program is written in the conventional text-based way or by using a CAD model of the 

workpiece. Virtual Reality (VR) is sometimes used to simulate the planned task before 

program execution. Offline programming methods are, however, inflexible to environment 

and workpiece changes due to the need to re-texting or re-modeling to compensate for  

the changes. This makes the offline programming methods suitable only for large batch size 

and often require technician specialized in software. On the other side, online robot 
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programming is where the program code is generated while the robot devices are ON.  

The two traditional online methods are the lead-through and the walk-through 

programming. The lead-through programming approach relies on the use of a teach pendant 

where the programmer moves the robot to the desired position with specified velocity. It is 

only suitable for producing large lot size [1]. The walk-through approach allows the user to 

physically move the robots’ end effector through the desired trajectory and the controller 

records the trajectory. Thus, the robot can be programmed in a very intuitive manner. 

However, walk-through programming is restricted due to the effect of mechanical loads, 

which make the movement of the robot difficult. An extension to walk-through 

programming is provided by the concept of Programming by Demonstration (PbD) where 

the operator shows the robot how the task should be performed. It enables users to construct 

programs without writing codes. 

2. RELATED WORKS 

The Robot PbD has a diverse of teaching tools, each has its own advantages and 

drawbacks. One of the most popular teaching tools used in PbD is the marker. Markers can 

be passive or active. Passive markers are made of retro-reflective materials, which reflect 

light in the direction from where it comes. Consequently, cameras are equipped with a band 

of infrared light emitting diodes (LEDs) where the reflected light from the marker back in 

the direction of the camera. This may, results in low Signal to Noise Ratio (SNR) as some 

reflective surfaces in the scene may be handled as markers. This necessitates adding extra 

complexity in processing the information sent by the tracking system. Kulić et al. [2–4] 

proposed an approach for incremental learning of full body motion with fingers from 

observation of human motion. Antonelli et al. [5] presented a new probe equipped with two 

reflective markers at the extremes and a stick at one end to physically touch the 

measurement points. It is used for welding a real-world curve on the free-form object. The 

standard deviation of the reconstructed 3D positions for reproducibility tests was (3.45, 

2.10, 2.05) mm. Antonelli and Astanin [6] made also an edit for the previous marker which 

equipped with three spherical IR reflective markers and a spherical endpoint. The markers 

are arranged in a scalene triangle, thus the three markers are sufficient to calculate tool's 

location and orientation. Experimental validation on a 2D plate showed a maximum error  

of 2.6 mm in the end-point location. It has standard deviation components of (0.014, 0.015, 

and 0.15) mm in x, y, and z directions respectively. Mueller et al. [7] presented an off-line 

method to program a welding robot. The pointing device, whose spatial position is traced, 

was equipped with five infrared markers. The markers are captured by MoCap system with 

four cameras. The results showed a deviation distance between captured trajectory and  

a given spline function within a range of 2.12 mm to 3.08 mm. Chen et al. [8] presented  

an Augmented Reality (AR)-based interactive robot teaching programming system. The 

system virtually projects the robot onto the physical industrial environment. The maximum 

tracking error of the used handheld teaching device through its motion along the edge  

of a rectangular frame was 3.231 mm. Active markers on the other hand are equipped with 

LEDs which require power source to emit their own light. Active markers are more 

expensive to fabricate, and it is usually harder to replace than the passive markers. 
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Moreover, ghost markers may be seen as the markers light reflects in shiny surfaces. Aleotti 

and Caselli [9] presented a virtual demonstration environment which comprises a virtual 

reality glove and a motion tracking device. Skoglund et al. [10] presented an approach to 

PbD based on a next-state-planner with fuzzy modeling learning algorithm. For the robot to 

interpret a demonstration the hand-state space is used which allows the robot to see  

the demonstrated motion as its own. Experimental validation showed a position accuracy in 

xyz axes of about (6, 4,12) mm. Ruppel et al. [11] presented a low-cost system for visual 

motion tracking which supports fusion with IMU (Inertial Measurement Unit) data.  

The average marker tracking position error is about of 0.26 mm and a median marker 

position error of 0.17 mm. Ferreira et al. [12] presented new tool based on a luminous 

marker built with high-intensity LEDs. The markers are captured by a set of industrial 

cameras. The proposed marker included 20 visible-light (RGB) LEDs. As the results 

indicated, the hue, saturation, and value (HSV) color space was useful for this classification. 

The max absolute error in position was (3.6, 8.2, 5.4) mm and in rotation was (4.1, 3.9, 3.6) 

degree.  

Duque et al. [13] presented a methodology for the execution of parts assembly 

operations, using Learning by Demonstration (LbD) techniques, such as TP-GMM (Task 

Parametrized Gaussian Mixture Model). The technique was used to generate trajectories 

based on a set of parameters that characterize the task. Wherefore, the results showed  

a maximum error of 1.5 cm. in position, and 10 degrees in orientation. Kyrarini et al.  

[14–16] presented a framework that permits a robot manipulator to learn how to execute 

structured tasks from human demonstrations which is automatically segmented into basic 

movements. The proposed system combined physical human robot interaction with 

attentional supervision in order to support kinesthetic teaching. Incremental learning and 

DTW (Dynamic Time Warping) methods were implemented to normalize the demonstrated 

observations in the same time domain. Fang et al. [17, 18] presented handheld cubic tool for 

the purpose of human-robot interaction in task and path planning processes. Four different 

planar markers are attached to the faces of the cube. Each marker consists of two-

dimensional matrix code, which encode data in a pattern of black and white squares.  

The system can be calibrated, and the tool is tracked continuously using the AR Toolkit 

tracking method. The average tracking error of acquiring 3D data points was about 11 mm. 

Rabbi et al. [19] made comprehensive analysis about fiducial marker attributes of AR 

Toolkit. This analysis has shown that the tracking accuracy is affected by marker size, 

marker distance from camera, marker speed, the brightness in the environment, and finally 

the contrast level of lighting. More researches that emphasize the necessity of finding 

flexible and more intuitive robot programming method include using robot in measurement 

[20] and inspection [21].  

As discussed before, the HMLV orders character of SMEs requires searching for  

a flexible, cost-effective method of robots programming. Conventional programming is only 

cost-effective for large batch sizes. By analyzing the above literature, it is found that PbD 

methods can partially meet the requirements of SMEs since it does not require experienced 

operators or CAD designs. However, for better achievement of the requirements  

the following factors should be taken into consideration while designing the tracking system 

in PbD methods: 
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• Reducing programming cost: This includes reducing the number of high resolution 

cameras, finding the best design of the teaching tool, and using passive ways as 

possible. 

• Accuracy and robustness: Tracking system should be robust and accurate specially 

against lighting condition changes (intensity and light direction), reflective surfaces, 

and ghost markers should be kept at acceptable level. 

In this research we target the above-mentioned factors by investigating an effective 

programming by demonstration method for SMEs’ industrial robots. The method uses a spe-

cially designed teaching tool with 5-spherical passive markers and two single cameras.  

The markers are robustly detected using CHT feature extraction technique. The method is 

validated experimentally using well-defined 3D points under different lighting conditions. 

The results show effectiveness of the proposed method for SMEs’ robot programming 

applications. 

The rest of the paper is organized as follows: Section 3 presents the proposed method 

with details  of its  hardware setting and implementation. Section 4 presents the system 

components which used in this research. Section 5 presents and discusses the results and the 

experimental work. Lastly, Section 6 concludes the research and proposes future research 

opportunities. 

3. PROPOSED SYSTEM 

3.1. MARKER DESCRPITION 

The proposed marker is of the passive type, it consists of 5 non-coated different-sized 

spheres, see Fig. 1. The spheres (markers) are arranged such that its centers are located on 

an imaginary spherical surface of radius 67 mm. The sphere equation can be applied for all 

markers’ centers to calculate the center of the imaginary sphere.  

 

Fig. 1. 3D-Assembly model of the marker 
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The teaching tool pointer is 37 mm shifted from the center of the imaginary sphere. 

However, the reason of using five spherical markers is to substitute for the occluded 

markers. Moreover, increasing the number of markers enhances the accuracy of the 

estimated pose of the teaching tool. The different size of the markers is used to distinguish 

each marker center on the imaginary sphere. 

3.2. MARKER DETECTION 

The 3D retrieving of the markers position in the world coordinates is based on a two-

cameras stereo vision. The calibrated stereo setup holds the geometric description of the 

cameras’ pose and their intrinsic parameters. Given two corresponding pixels in two images 

the reconstructed 3D position is determined using the Triangulation and Sampson correction 

algorithm [22, 23]. The first stage is to identify the markers in two images for the same 

scene. This is done by using Circular Hough Transform (CHT) technique since the 

projection of the markers are always circular. CHT is a feature extraction technique to detect 

circles in images even if the circle is incomplete [24, 25]. First, all edges in the image are 

detected which can be done using Canny, Sobel or Morphological operations [26–28].  

A voting procedure is then carried out in a parameter space and the characteristic points  

of circles are determined. After that the pattern of the circles is extracted and with the help 

of circles radius, the center pixels of the circles are estimated [29].  

After using CHT method to detect circles in both images a designed matching 

algorithm is used to match the detected circles. Figure 2 describes the block diagram of the 

algorithm of the developed methodology. The algorithm compares the circles diameter in 

the two images within the specific range of diameters for each marker throughout  

the workspace.  

 

Fig. 2. Algorithm block diagram of the developed methodology 
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Figure 3 shows the detected markers in both images. After the matching process is 

done the 3D reconstructed position of each marker is determined as discussed above. The 

next sections describe in details the methods used in each stage. 

 

Fig. 3. Markers detection in stereo camera’s images 

3.3.TEACHING TOOL POSE ESTIMATION 

3.3.1. POSITION ESTIMATION 

Since the markers’ centers are located on a surface of an imaginary sphere the problem 

of finding the teaching tool origin is reduced to finding this sphere’s center. Given at least 

four points, which are non-coplanar and any three of them are not collinear, the sphere’s 

center in 3D is given as follows: 

(𝑥𝑖 − 𝑥𝑡)2 + (𝑦𝑖 − 𝑦𝑡)2 + (𝑧𝑖 − 𝑧𝑡)2 = 𝑟2,  (1) 

where, r is the sphere radius, 𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 are the coordinates of the sphere’s center, 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 are 

the marker center coordinates, 𝑖 = 1, . . . . . . . . . . . , 𝑁, and N is the number of identified 

markers. Obviously, these equations contain quadratic terms. By subtracting one equation 

from others we get a set of linear equations of the form: 

𝑎1𝑖𝑥𝑡 + 𝑎2𝑖𝑦𝑡 + 𝑎3𝑖𝑧𝑡 = 𝑏𝑖 ,                                            (2)  

which can be expressed as,                                                      

𝑨 𝒙𝒕 =  𝒃,                                                             (3) 

where A is a matrix of coefficients (𝑁 × 3), xt is the required coordinates vector and b, 

(𝑁 × 1), is a vector of the equations’ RHS. Since the system described has intrinsic errors 

due to the accuracy of both the tracking system and the teaching tool manufacturing it can 

be solved in sense of least-squares problem, |𝑨 𝒙𝒕 −  𝒃| 2. This can be done using Singular 

Value Decomposition (SVD) method. 

3.3.2. ORIENTATION ESTIMATION 

Arun et al. [30] presented a method to find the rotation between two data sets 

of corresponding 3D points. The method estimates the rotation matrix that best describes the 
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relative orientation between two data sets (in the sense of root-mean-square error). In Fig. 4, 

data set B represents the teaching tool markers’ 3D positions, while A represents the 

corresponding reference-frame-aligned data set. A and B contain a number N of 3D points 

elements 
iA  and 

iB , where (i = 1,…., N). The sequence of calculation is as follows. In order 

to get the relative rotation a minimum of three corresponding points are required. First, both 

data sets must be origin centered; this is done by subtracting them from their respective 

origins [30]. Second, the origin-centered data set A and B are used to calculate  

the covariance matrix H in the form: 

         𝑯 = ∑  𝐴𝑖
′𝑁

𝑖=1  𝐵′
𝑖
𝑡
                                                         (4)  

 
Fig. 4. Teaching tool orientation estimation 

The third step is to calculate the singular value decomposition of H; 𝑯 =  𝑼 𝑺 𝑽𝑇. 

Then, the optimal orientation matrix is:  

𝑹∗ =  𝑽 [
1 0 0
0 1 0
0 0 1

] 𝑼𝑇,                                                     (5)  

𝑞 =  𝑠𝑖𝑔𝑛 (𝑑𝑒𝑡  (𝑽 𝑼𝑇)),                                                 (6)  

where, q is a parameter used to specify the right-handed coordinates system [12]. 

4. EXPERIMENTAL SETUP 

In order to validate the proposed methodology an experimental setup is built which 

contains two fixed cameras, a host computer, the teaching tool, and 3D validating bodies, 

see Fig. 5. The cameras (life cam HD Microsoft cameras-1080p) capture the teaching tool at 

the different waypoints and send the images to the host pc (Intel Core-i5 4200) for image 

processing and running of the PbD algorithm. MATLAB of MathWorks company is used 
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for this purpose. Fig. 6 shows a half-cylindrical body fabricated by a CNC milling machine 

of accuracy (4 µm). The body has two paths which contain a number of 4 mm depth holes. 

The holes are used to fix the teaching pointer. The body is used to validate the proposed 

method for position estimation. On the other hand, Fig. 7 show another 3D body used for 

validating the orientation estimation. The body contains two setting bases for the teaching 

tool. One base is parallel to xy plane; the second one inclinds with 45°to the xy plane. The 

teaching tool on each base can be rotated by 0°, 90°, 180° 𝑎𝑛𝑑 270°. The two bodies, Figs. 5 

and 6 are set on a graph paper to measure their location relative to the reference coordinates. 

 

Fig. 5. Experimental setup 

  

Fig. 6. Half-cylindrical body used for position validation 
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Fig. 7. 3D-Metallic object used for orientation validation 

5. RESULTS 

5.1 POSITION TEST 

Fig. 8 shows the validation process for position estimation where the teaching tool is 

set on the well-defined holes of the half-cylindrical body. Fig. 9 shows the absolute error  

of the teaching tool position (x, y, z). The maximum recorded value is about 5 mm which is 

more accurate compared with [11–14]. The root mean square error (RMSE) for all the tested 

points is (0.75, 1.61, 2.42) mm. Fig. 10 illustrates an implementation for the tracking 

teaching tool position along 3D path. The results show that the proposed system is 

competitive, and less cost compared with the infrared tracking system which costs around 

3300 Euro for the configuration with two cameras. The developed system in the current 

research costs around 1200 Euro.  

 

Fig. 8. Teaching tool position validating process 

 
Fig. 9. Teaching tool position error estimation 
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 Fig. 10. Tracking for teaching tool position along 3D path 

5.2. ORIENTATION TEST 

 The same process is repeated to validate the estimation of the teaching tool orientation. 

As shown in Fig. 11, the teaching tool is set on a well-defined orientation using the 3D 

specially designed metal object. Ten different orientations are selected randomly throughout 

the workspace. The results are recorded in terms of error angles of rotation 

(𝑒𝛼 , 𝑒𝛽, 𝑒𝛾)  between the actual and estimated X, Y, Z axes respectively. Fig. 12 shows the 

absolute error in teaching tool orientation (𝑒𝛼 , 𝑒𝛽, 𝑒𝛾). The maximum recorded error is 

5. 4° and the RMSE for all orientations is (1.11°, 2.18°, 2.99°).  

 

Fig. 11. Teaching tool orientation validating process 

 

Fig. 12. Teaching tool orientation error estimation 
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5.3. LIGHTING CONDITION ROBUSTNESS TEST 

Finally, the proposed method robustness against different lighting conditions is tested. 

The teaching tool is placed in a well-defined pose and the algorithms are run on different 

lighting conditions, see Fig. 13. The lighting conditions are changed both in intensity and 

direction of illumination; distracted light (Fig. 13 a–e), overhead light (Fig. 13 f–h), and 

inclined light (Fig. 13 i–j).  

 
Fig. 13. Lighting condition robustness test 

In each lighting condition both position and orientation errors are estimated, see  

Fig. 14. The maximum position error is found to be 4.8 mm and the maximum orientation 

error is 4.97 degree. The standard deviation for the teaching tool position is (2.38, 2.73, 

1.76) mm and for the orientation is (2.52, 1.42, 1.55) degree.  

  

Fig. 14. Pose measurement uncertainty at different lighting conditions (a) position errors (b) orientation errors 

6. CONCLUSION 

In this research a PbD method for programming industrial robots, particularly used in 

SMEs, is presented. A simple passive teaching tool is used together with the robust method 

of feature extraction, CHT. A matching algorithm is developed to match the detected 

b) a) 
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markers in two images of the teaching tool. Markers’ 3D positions are reconstructed using 

Triangulation and Sampson correction algorithms. SVD method is used to determine 

teaching tool position and orientation in the space. The developed tool and programming 

method have been tested experimentally using well-defined 3D paths and orientations.  

The results showed competitive level of accuracy compared with more complex methods  

of using more cameras and active systems. The results also showed robustness against 

different lighting conditions ranging from 5 lux – 880 lux and under different illumination 

directions. The research is considered a step forward to meet the requirements of program-

ming industrial robots in SMEs. Future work on the research contains two consecutive 

steps: (1) robot tool-center-point (TCP) position and tool orientation will be considered. (2)  

the system will be customized for a specific industrial application.  
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